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Calculating the bound spectrum by path summation in action- 
angle variables 
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Abstract. The density of states n ( E )  is calculated for a bound system whose classicarmotion 
is integrable, starting from an expression in terms of the trace of the time-dependent Green 
function. The novel feature is the use of action-angle variables. This has the advantages 
that the trace operation reduces to a trivial multiplication and the dependence of n ( E )  on all 
classical closed orbits with different topologies appears naturally. The method is contrasted 
with another, not applicable to integrable systems except in special cases, in which 
quantization arises from a single closed orbit which is assumed isolated and the trace taken 
by the method of stationary phase. 

1. Introduction 

In a recent paper (Berry and Tabor 1976, to be referred to as I) we showed that the 
density n(E)  of quantum states for a bound system whose classical motion is multiply 
periodic can be closely approximated by a ‘topological sum’ over all the closed classical 
orbits at the energy E. The derivation proceeded by transforming the generalized 
Bohr-Sommerfeld quantum condition obtained by Einstein (1917), Brillouin (1926) 
and Keller (1958), a rigorous treatment of which was provided by Maslov (1972). Each 
closed orbit contributes an oscillatory variation to n (E)  (see also Balian and Bloch 
1972, 1974), and the sum converges onto a series of delta functions at the bound state 
energies. 

In this paper we derive again the central result of I, but by a different method, whose 
starting point is the expression for n(E)  in terms of the trace of the time-dependent 
Green function. There are several reasons for presenting this alternative derivation, 
arising from the fact that we use action-angle variables to describe the classical motion. 
In the first place the operation of taking the trace corresponds, in action-angle 
variables, to a trivial multiplication. This generalizes the known result (Rajaraman and 
Weinberg 1975) that the trace operation is trivial when a symmetry is present (see 
Gutzwiller 1970, for a particular example), the point being that action variables are 
often related to constants of the motion unconnected with any symmetry (examples are 
the moduli of velocity components in a rectangular box). In the second place the 
action-angle formalism shows in the clearest and most natural way how n(E)  depends 

§ Permanent address: H H Wills Physics Laboratory, Bristol University, Tyndall Avenue, Bristol BS8 ITL 
UK. 
11 Now at Department of Physical Chemistry, Hebrew University of Jerusalem, Jerusalem, Israel. 

371 



372 M V Berry and M Tabor 

on all topologically different closed orbits with energy E as well as on all repeated 
traversals of each orbit. In the third place there is a different quantization method, 
devised by Gutzwiller (1971), which proceeds from the assumption that the closed 
orbits are isolated, so that the trace can be evaluated by the method of stationary phase; 
Gutzwiller's method, and later elaborations of it (Miller 1975, Voros 1976, Dashen etal 
1974, 1975, Rajaraman 1975), are in general inapplicable to multiply periodic systems 
(even when these are non-separable), and this fact is most clearly brought out by the 
action-angle formalism. And in the fourth place the derivation is in parts not obvious 
and we think the subtleties are worth presenting. 

2. Basic formalism 

Consider a bound system with N degrees of freedom whose classical Han-$tonian 
H(4, p )  depends on the 2N canonical coordinates and momenta q and p .  Let H be the 
corresponding Hamiltonian operator. Then it is well known that the density of states, 
defined as 

n(E)=TrS(E-A),  (1) 

can be expressed as 

where K is the time-dependent Green function, defined as 

In the semiclassical approximation K depends on the classical paths from 4A to qe in 
the time t. If the rth such path has coordinates and momenta qr(r) ,  pr(t)  the action Wr 
along it is 

W(qA7 q B ;  t )  = lo' dt[pr(t) d r ( t )  - H(qr ( t ) ,  pr(t))]* (4) 

From this can be obtained the Nth-order determinant D, defined as 

where the suffixes i and j label components of 4A and 48 and where the right-hand 
member is the Jacobian between qB and pAr. If ar is the number of caustics of the paths 
emanating from 4A that the rth path encounters en route to 48, the semiclassical Green 
function Ks, is 

A derivation of this result, and an account of its long history, is given by Berry and 
Mount (1 972). 
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3. Action-angle variables 

The systems under consideration are multiply periodic. This means that they possess N 
independent constants of motion (i.e. they are integrable) and inhabit N-dimensional 
tori in the 2N-dimensional phase space. Each such torus is labelled by action variables 
I = ( I I  . , . I N ) ,  and points on each torus are labelled by angle variables 8 = ( 6 ,  . . . O N )  in 
such a way that di changes by 27r during the ith irreducible circuit of the torus. 8 and I 
are respectively the new coordinates and momenta in a canonical transformation from 
the original 4 and p .  In these new variables the Hamiltonian H ( I )  is independent of the 
angles 8. Proofs of these assertions are given in appendix 26 of Arnol’d and Avez 
(1968). 

Dynamics is very simple in action-angle variables. The actions I remain constant, 
and the system winds its way round the torus with angular velocities obtained from 
Hamilton’s equation as 

e = V,H(I) = w ( I ) ,  (7) 
where the defined quantities w = (wl  . . . oN) are the N frequencies of the multiply 
periodic motion. It is trivial to integrate this equation and obtain implicitly the actions 
&(@A, e,, t )  specifying the torus on which the system moves on the rth path between 
configurations 8, and 8, in time t :  

@,-@A =w(lr)t. (8) 

W ( 8 A , & ; t ) = I r  . (&-8A)-H(Ir)f,  (9) 

The action W, is easily found from (4) as 

and the determinant Dr is from ( 5 )  and (8) 

These last two equations give the ingredients necessary to rewrite equation (6) for the 
Green function Ks,(8B, 8, ; t )  in angle coordinates. The notorious difficulties in setting 
up a fully-fledged quantum mechanics in action-angle variables (Carruthers and Nieto 
1968) are not involved in semiclassical approximations and so do not affect the present 
work. For an application showing the power of ‘action-angle semiclassical mechanics’, 
and pertinent references, see Marcus (1971). 

The density of states is given by equation (2). This involves the trace operation, that 
is integration over all configurations to which the system returns in time t. Now the 
angles 8 and 8 + 27rM, where M is an N-dimensional vector with integer components, 
represent the same configuration, so that in the semiclassical approximation the integral 
in (2) is 

(1 1) 
2.rr 

dNq Ksc(q, 4; t )  = dN6 Ksc(8 + 27rM 8 ;  t ) .  
M O  

The classical paths corresponding to each vector M are those which at time t have 
returned to the same point on their torus after making M I  circuits of coordinate el, M2 
circuits of coordinate &, etc. Therefore the paths involved in the trace operation are 
all closed-when the system returns to the original configuration its ‘momentum’ I has 
not changed. This contrasts with the situation when (say) Cartesian coordinates 4 are 
employed to specify the system’s configuration: then the momenta p are usually 
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different when the system returns to q. It is clear that Mlabels the topology of the closed 
orbits, and will henceforth be used instead of the earlier label r, under the assumption 
that at most one torus contains orbits with topology M (in I we discuss briefly what 
happens in the interesting situation when this assumption is false). 

The torusI,(t) containing orbits with topology M is determined (equation (8)) by 

w(I,(t))t = 2TM. (12) 

For the systems considered here, all components of w are positive. (This corresponds to 
convexity of the ‘energy contours’ on which H ( I )  is constant in I space.) Moreover, in 
equation (2) t is neve? negative. Therefore equation (12) shows that there are no paths 
with topologies for which any component M, of M is negative. The action is W,(f) 
which from equation (9) is 

W,(f) = 2TI,(t) . M-H(I,( t ) ) t ,  (13) 

while the determinant D M ( f )  is given by (10) with I, replaced by I,. 
Now follows a point of crucial importance. The expressions just found for W, and 

D, are independent of 8. This means that the functions Ks,(8 + ~ T M ,  8 ;  t )  in eqtation 
(1 1) are also independent of 8, so that the integrals over 8 are trivial and simply give a 
factor ( 2 ~ ) ~ .  The reason for this great simplification is that the closed orbits with 
topology M are not isolated but form a continuous family covering the torus I,. 

The topology M = 0 is special: it corresponds to the ‘paths of zero length’ and can be 
shown to give the smoothly varying ‘Thomas-Fermi’ density of states n,,(E) (for proofs 
see I or Berry and Mount 1972). Removing the te rmM= 0 from the summation in (1 l ) ,  
and using equations (6) ,  (10) and (13)’ the density of states (equation 12)) can now be 
written as 

+ nTF(E). (14) 

In this equation, I, is determined by equation (12), the prime on the summation 
denotes the exclusion of terms with any negative Mi and also the term M =  0, and a,, 
which replaces the caustic factor a, in (6) ,  is a vector in which each component aM8 
denotes the number of caustics of the family of paths encountered over each cycle i of 
the torus containing the paths with topology M (so that aM. M is the total number of 
caustics encountered along the whole path). 

The convergence of the integrand of (14) for large t depends on the behaviour of 
H ( I )  for small I. If H begins with linear terms (as in the harmonic oscillator), the 
condition (12) has no solution as t + 00 for any finite non-zero M-there are no closed 
orbits of any given topology with arbitrarily long period. Then the integrand of (14) is 
zero for large t. If H begins with terms quadratic in I (as in the particle in a box), closed 
orbits with arbitrarily long period do exist, and the integrands of (14) behave as 
exp(iEt)/tN” as t -* 00, which is sufficient to ensure the convergence of the integrals. (A 
faster convergence could be obtained by calculating not n(E) but the smoothed function 
n,(E), corresponding to replacing E by E +iy, introduced by Balian and Bloch (1972, 
1974) and employed by us in 1.) 

The appearance of h in the denominator of the exponent in (14) makes the integrand 
a rapidly varying function of t under semiclassical conditions. Therefore the integral 
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can be evaluated by the method of stationary phase. The stationary point tM(E) of (14) 
is given by 

d aril 
dt at h - (phase of ( 14)) = ( 2 d f -  t VIH) . - - H ( I , )  + E = E - H(I,( t M ( E ) ) )  = 0, ( 15) 

where the second equality holds by virtue of ( 7 )  and (12) .  This result is obvious: tM(E)  is 
the orbit time for which the contributing tori I ,  have energy E. The second derivative 
of the exponent in (14)  is 

These results enable the stationary phase result to be written as 

n ( E )  = nTF(E)+2 Re x ' A M  exp 
M 

where the amplitudes A M  are defined by 

(2  7) N -  

h i t Jdet(aw,/aIMl)Iw(IM). ar,(tM)/at' Ab= N + l N + l  N 

4. Evaluating the amplitudes 

The rather complicated manipulations in this section have the following aim: to 
eliminate from the amplitudes (18) all reference to the tM, and obtain an expression 
directly involving the Hamiltonian H ( I )  and the geometry of the energy contours in I 
space, on which H ( I )  =E. 

From equation (12), 

so that (1 8) becomes 

The denominator will be simplified using the fact that differentiating equation (12)  with 
respect to t gives 

where suffixes denote components of vectors and where the labels M have been 
dropped for notational convenience. To solve these equations for the N unknowns 
aI,/at, it is convenient to introduce into I space a Cartesian coordinate system whose 
origin lies at IM, in which one coordinate qo measures actions perpendicular to the 
energy contour at I,, and the other N -  1 coordinates 9 = (vl . . . qN-J measure 
actions in the tangent plane to the energy contour at I , ,  as shown in figure 1. 
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Figure 1. Coordinate systems in space of actions I ,  illustrated for the case of two degrees of 
freedom: ( T ~ ,  q )  are Cartesians whose origin is & and q are N -  1 coordinates in the 
tangent plane to the energy contour at I,, and (to, 6) are curvilinear coordinates where 6 
are N - 1 coordinates in the energy contour. 

In these coordinates, the fact that w is perpendicular to the energy contour (this 
follows from equation (7) )  means that 

0 0  A 14, @ 1 = @ 2 = .  . .=wN-l=o.  (22) 

Therefore Cramer's rule applied to (21) gives, for the component of af/at along vo, 

where the determinant in the numerator is of order N -  1 (i.e. i and j run from 1 to 
N - 1) and the determinant of order N in the denominator is the same as that appearing 
in the denominator of (20). The scalar product in (20) is 

avo w .  - = Jw I-, 
at at 

so that, using (23), equation (20) becomes 

where we have used the fact, which follows from our earlier assumption that there is at 
most one torus with topology M, that the energy contour is convex so that the 
determinant in the denominator of (23) is positive definite. 

Now a curvilinear coordinate system is introduced into f space, in which N - 1  
coordinates 6 = (& . . . &,-l) measure position on the energy contour and &, measures 
perpendicular distance from the contour, as shown in figure 1. Of course, very close to 
f M  this coincides with the system (v0, q) previously defined. The N - 1 quantities af/ayi 
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(1 G i G N -  1) are unit tangent vectors on the energy contour, so that they are 
perpendicular to U ,  i.e. 

(1 d i G N -  1). (26) 
ar 

0.-=0 
861 

Differentiating with respect to ti gives 

At the point I, of interest, first derivatives with respect to 7 and 6 are identical, so that 
the determinant in (25) is 

where K ( I )  is the scalar curvature of the energy contour, defined in 0 3 of I. Let pM be 
the excess of positive over negative eigenvalues of the matrix w . a'I/dtl a&. Then there 
are ( N -  1 -&)/2 negative eigenvalues, and 

IKI. (29) K = (- 1)(N-1-0&/2 

Thus equation (25) for the amplitudes becomes, finally, 

eim3M/z 

N+1 
h lwN-llw(IM)lzK(IM) - 

For the density of states, equation (17) gives 

This is identical with equation (21) of I which we derived from the quantization rule 
for multiply periodic systems. 

5. Discussion 

A thorough discussion of equation (31) was given in I, together with computations 
demonstrating its high degree of numerical accuracy. The central result of this work is 
that for classically integrable systems a single closed classical orbit is of no quantal 
significance, but the torus in phase space formed by the continuous family of which the 
orbit is a member contributes a term to n ( E )  that varies smoothly with energy in an 
oscillatory manner. The bound states, which give delta functions in n(E),  arise only on 
summing over all the tori that contribute with energy E, i.e. all families of topologically 
different orbits and repeated circuits of the same orbit. 

In sharp contrast with these results is the picture presented by a different quantiza- 
tion method, currently enjoying some popularity. On the assumption that the closed 
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orbits of the system are isolated, Gutzwiller (1971) evaluates the trace in equation (2) by 
the method of stationary phase, and obtains a quantization condition involving the 
stability parameters of a single classical orbit and a single quantum number arising from 
repeated circuits of the orbit. By considering harmonic deviations from the single 
closed orbit, later authors (Miller 1975, Voros 1976, Dashen et a1 1974, 1975) show 
how N - 1 further quantum numbers can be introduced. 

It is difficult to assess the applicability of the work of these authors in this paper and 
in I, because the closed orbits are not isolated (they fill tori) and moreover there are 
infinitely many topologically different closed orbits at each energy (any discussion based 
on the harmonic oscillator in several dimensions, or on the Coulomb potential, is 
irrelevant here, because these systems are degenerate in that all their orbits are closed 
and moreover have the same topology). A good illustration of this point is provided by 
the particle in a two-dimensional rectangular box with sides a and b, where the levels 
are exactly known. It is easy to prove the following results: the actions I, and I, picked 
out by the quantum condition do not correspond to closed classical orbits if a / b  is 
irrational, and correspond to only an infinitesimal fraction of the closed orbits if a / b  is 
rational. Moreover if the closed orbits are made the basis of quantization an infrared 
catastrophe ensues, because there are infinitely many closed orbits with the ‘ground 
state’ action h for a single traversal, and their energies diminish to zero as their 
topological complexity (number of pairs of x and y reflections before closure) 
increases! However, for most integrable systems there will be some parts of the 
spectrum for which Gutzwiller’s methods can be applied to give an approximate 
description. As explained by Voros (1976) these are the contributions from the 
degenerate tori which do indeed contain just one closed orbit (they form the ‘cores’ of 
the whole concentric system of tori with energy E ) ;  an example is the circular orbit in 
the minimum of the effective potential for a particle bound by a central force. 

About generic non-integrable classical systems that are far from integrable ones, 
little is known. But a great deal is known about quasi-integrable classical systems whose 
non-integrability consists of a generic perturbation (see Arnol’d and Avez 1968 and the 
useful review by Ford 1975). For such systems the closed orbits are indeed isolated; 
half of them are stable, and surrounded by manifolds of multiply periodic orbits (i.e. tori 
in phase space). This would seem to justify the application of the method of stationary 
phase, provided the total phase space volume occupied by such tori exceeds h“ (see the 
related discussion by Percival 1976). However, since such isolated closed orbits arise 
from the break-up of the ‘unperturbed’ tori of closed orbits, there will in general be not 
just one but a large number of these orbits, with different topologies, and it is hard to see 
how any quantum condition arising from the properties of a single closed orbit can be 
correct. The other half of the isolated closed orbits are unstable and surrounded by 
orbits pathologically distributed and stochastic in character as in an ergodic system, 
which are not confined to tori in phase space, and it seems unlikely that the method of 
stationary phase, based as it is on the assumption that isolated orbits are embedded in a 
smoothly varying environment, can be employed to take the trace. 
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